M2.(a) (i) (Minimum) Speed (given at the Earth's surface) that will allow an object to leave / escape the (Earth's) gravitational field (with no further energy input) Not gravity Condone gravitational pull / attraction

(ii) $\frac{1}{2}mv^2 = \frac{GMm}{r}$

Evidence of correct manipulation At least one other step before answer

(iii) Substitutes data and obtains $M = 7.33 \times 10^{22}$ (kg) or Volume = $(1.33 \times 3.14 \times (1.74 \times 10^6)^3$ or 2.2×10^{19} $\sigma r \rho = \frac{3v^2}{8\pi Gr^2}$

3300 (kg m⁻³)

A1

C1

B1

B1

B1

 (b) (Not given all their KE at Earth's surface) energy continually added in flight / continuous thrust provided / can use fuel (continuously) 1

2

2

	Less energy needed to achieve orbit than to escape from Earth's gravitational field / it is not leaving the gravitational field			
		B1	2 [7]]
M3 .C			[1]]
M4. A			[1]	J
M5. A			[1]]
M6 .C			[1]]
M7. B			[1]]
M8. (a)	zero potential at infinity (a long way away) energy input needed to move to infinity (from the point)		B1	
	Page 3			
PhysicsAndMathsTutor.com				

B1

work done by the field moving object from infinity potential energy falls as object moves from infinity

B1

C1

C1

2

(b) Any pair of coordinates read correctly

$$E_{p \text{ or }} V = (-) \frac{GM}{r}$$

Rearrange for M

6.4 (±0.5) × 10²³ kg

3

3

(c)	Reads correct potential at surface of Mars = -12.6 (MJ)	•
	or reads radius of mars correctly (3.5 \times 10°)	C1
	equates to $\frac{1}{2} v^2$ (condone power of 10 in MJ)	•
	use of v = $\sqrt{2GM/r}$ with wrong radius	C1
	5000 ± 20 m s ⁻¹ (condone 1sf e.g. 5 km s ⁻¹)	
	e.c.f. value of M from (b) may be outside range for other method 6.2 × 10 [.] x √their M	A1
(d)	d) Attempts 1 calculation of <i>Vr</i>	
	Many values give 4.2 so allow mark is for reading and using correct coordinates but allow minor differences in readings Ignore powers of 10 but consistent	B1

Two correct calculation of Vr

	,	1

	Three correct calculations with conclusion		
			³ [11]
M9.	D		[1]
M10.	В		[1]
M 11.	D		[1]
M12.	(a) work done per unit mass in bringing object from infinity to point B1		
	potential at infinity zero by definition B1		
	ש work has been done by the field so potential at all points closer than infinity negative		
	B1	3	

(b) use of point on graph allow within ± small square

substitution into $V = -\frac{GM}{r}$

range from
$$590 - 6.90 \times 10^{24}$$
 (kg)

(c) (i)
$$\Delta E_{p} = \frac{-\frac{GMm}{R_{E} + h} + \frac{GMm}{R_{E}}}{C1}$$

addition of radius of Earth to give 7.25 × 10° (m)
1.54 × 10° (J)
A1

3

3

C1

C1

A1

(ii) equates
$$\frac{mv^2}{r}$$
 and $G\frac{mM}{r^2}$
C1
to give $\Delta E_{\kappa} = \frac{G}{2} \frac{mM}{2} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$
C1
1.25 × 10° J
A1
positive or increase

PhysicsAndMathsTutor.com

4

B1

(iii)	(lower altitude so) gpe decreases ke increases			
		C1		
	loss of gpe is twice gain in ke			
		A1	•	
			2	[15]

[1]

M13. A